Preconditions	Elementary mathematical skills, basic of algebra and trigonometry
The aim of the course and acquired skills	After completing the course, a student understands physical laws and is able to solve physical problems concerning classical mechanics.
Content of the course	1. Introduction and mathematical concepts (Lessons 1-2) 2. Kinematics in one dimension (including equation of motion) (Lessons 3-4) 3. Kinematics in two dimensions (Lesson 5) 4. Forces and Newton's laws of motion (6-8) 5. Uniform cirular motion, centripetal acceleration and force; satellites in circular orbits (9) 6. Work and energy (11-13) 7. Impulse and momentum (14) 8. Rotational kinematics and dynamics (15-18) 9. Harmonic motion (20-22) 10. Elastic deformation, stress, strain, Hooke's law (23) 11. Fluids (24-26)
Literature	Physics (chapt. 1-11), John D. Cutnell \& Kenneth W. Johnson - 8th ed. ISBN 978-0-470-22355-0
Students input	Class activity - students solve problems on a board and take notes during lessons; home activity students prepare themselves for the next lesson by reading the textbook or watching the video on an online learning platform; students do homework in the form of problems to solve as a revision and preparation for a test.
Assessment criteria	Punctation: - 0-30 points - final exam - 0-30 points -3 tests during the semester (Lessons $10,19,27$) - 0-20 points - students' activity before the lessons (online quiz) - 0-20 points - student's activity after the lessons (homework) Grades: - $[0,59]-2.0$ - $[60,68]-3.0$ - $[69,74]-3.5$ - $[75,81]-4.0$ - $[82,90]-4.5$ - $[91,100]-5.0$

$\left.\begin{array}{|l|l|}\hline \text { Preconditions } & \begin{array}{l}\text { Elementary mathematical skills, basic of algebra and trigonometry } \\ \text { The aim of the } \\ \text { course and } \\ \text { acquired skills }\end{array} \\ \hline \begin{array}{l}\text { Content of the } \\ \text { course }\end{array} & \begin{array}{l}\text { After completing the course, a student understands physical laws and is able to solve physical } \\ \text { problems concerning thermodynamics, electrostatics, magnetism, optics, theory of relativity and } \\ \text { nuclear physics. }\end{array} \\ \hline\end{array} \begin{array}{l}\text { 1. Temperature and heat, the ideal gas (Lessons 1-2) } \\ \text { 2. Thermodynamics (Lessons 3-5) } \\ \text { 3. Waves and sound (6-7) } \\ \text { 4. Interference, diffraction (8-9) } \\ \text { 5. Electrostatic (11-12) } \\ \text { 6. Electric circuits (13-15) } \\ \text { 7. Magnetic forces and magnetic fields (16-17) } \\ \text { 8. Electromagnetic induction (19-20) } \\ \text { 9. Alternating current circuits (21) } \\ \text { 10. Optics (including basis of electromagnetic waves) (22-24) } \\ \text { 11. Theory of relativity (25) } \\ \text { 12. Nuclear physics (26) }\end{array}\right]$

